Physical Quantities
Quantity | Definition | Formula | Units | Dimensions | |
---|---|---|---|---|---|
Length or Distance | fundamental | d | m (meter) | L (Length) | |
Time | fundamental | t | s (second) | T (Time) | |
Mass | fundamental | m | kg (kilogram) | M (Mass) | |
Area | distance2 | A = d2 | m2 | L2 | |
Volume | distance3 | V = d3 | m3 | L3 | |
Density | mass / volume | d = m/V | kg/m3 | M/L3 | |
Velocity | distance / time | v = d/t | m/s c (speed of light) |
L/T | |
Acceleration | velocity / time | a = v/t | m/s2 | L/T2 | |
Momentum | mass × velocity | p = m·v | kg·m/s | ML/T | |
Force Weight |
mass × acceleration mass × acceleration of gravity |
F = m·a W = m·g |
N (newton) = kg·m/s2 | ML/T2 | |
Pressure or Stress | force / area | p = F/A | Pa (pascal) = N/m2 = kg/(m·s2) | M/LT2 | |
Energy or Work Kinetic Energy Potential Energy |
force × distance mass × velocity2 / 2 mass × acceleration of gravity × height |
E = F·d KE = m·v2/2 PE = m·g·h |
J (joule) = N·m = kg·m2/s2 | ML2/T2 | |
Power | energy / time | P = E/t | W (watt) = J/s = kg·m2/s3 | ML2/T3 | |
Impulse | force × time | I = F·t | N·s = kg·m/s | ML/T | |
Action | energy × time momentum × distance |
S = E·t S = p·d |
J·s = kg·m2/s h (quantum of action) |
ML2/T | |
Angle | fundamental | θ | ° (degree), rad (radian), rev 360° = 2π rad = 1 rev |
dimensionless | |
Cycles | fundamental | n | cyc (cycles) | dimensionless | |
Frequency | cycles / time | f = n/t | Hz (hertz) = cyc/s = 1/s | 1/T | |
Angular Velocity | angle / time | ω = θ/t | rad/s = 1/s | 1/T | |
Angular Acceleration | angular velocity / time | α = ω/t | rad/s2 = 1/s2 | 1/T2 | |
Moment of Inertia | mass × radius2 | I = m·r2 | kg·m2 | ML2 | |
Angular Momentum | radius × momentum moment of inertia × angular velocity |
L = r·p L = I·ω |
J·s = kg·m2/s ћ (quantum of angular momentum) |
ML2/T | |
Torque or Moment | radius × force moment of inertia × angular acceleration |
τ = r·F τ = I·α |
N·m = kg·m2/s2 | ML2/T2 | |
Temperature | fundamental | T | °C (celsius), K (kelvin) | K (Temp.) | |
Heat | heat energy | Q | J (joule) = kg·m2/s2 | ML2/T2 | |
Entropy | heat / temperature | S = Q/T | J/K | ML2/T2K | |
Electric Charge +/- | fundamental | q | C (coulomb) e (elementary charge) |
Q (Charge) | |
Current | charge / time | i = q/t | A (amp) = C/s | Q/T | |
Voltage or Potential | energy / charge | V = E/q | V (volt) = J/C | ML2/QT2 | |
Resistance | voltage / current | R = V/i | Ω (ohm) = V/A | ML2/Q2T | |
Capacitance | charge / voltage | C = q/V | F (farad) = C/V | Q2T2/ML2 | |
Inductance | voltage / (current / time) | L = V/(i/t) | H (henry) = V·s/A | ML2/Q2 | |
Electric Field | voltage / distance force / charge |
E = V/d E = F/q |
V/m = N/C | ML/QT2 | |
Electric Flux | electric field × area | ΦE = E·A | V·m = N·m2/C | ML3/QT2 | |
Magnetic Field | force / (charge × velocity) | B = F/(q·v) | T (tesla) = Wb/m2 = N·s/(C·m) | M/QT | |
Magnetic Flux | magnetic field × area | ΦM = B·A | Wb (weber) = V·s = J·s/C | ML2/QT |
Note: Other conventions
define different quantities to be fundamental.
Mass, energy, momentum, angular momentum, and
charge are conserved, which means the total amount does not change in an
isolated system.
No comments:
Post a Comment